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Metastability for the Contact Process 
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We prove that the Harris contact process shows metastable behavior for any 
supercritical value of the parameter, even when some macroscopic observables 
are observed. 
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1. I N T R O D U C T I O N  

The problem of explaning theoretically the phenomenon of metastability as 
shown by undercooled gases, ferromagnets along the hysteresis loop, and 
many other systems has been attacked in many different ways during the 
last years. ~5'6) In the present paper we adopt the theory proposed recently 
in Ref. 1 (see also Ref. 10). 

In this theory a system is in a metastable situation if (a) it stays out of 
its equilibrium situation during a memoryless random time (exponential 
random time), and (b)during this time in which the system is out of 
equilibrium it stabilizes in the sense that an observer measuring temporal 
means of some observable quantity will record values which are close to 
the expectation of this observable in some fixed probability distribution on 
the configurations of the system. We call this property thermalization. 

In the present work we extend the theorems proved in Ref. 1 for the 
Harris contact process (this process was invented in Ref. 9; for reviews see 
Refs. 3, 4, and 8) concerning its metastable behavior. 
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Informally this process can be described as follows: particles are dis- 
tributed in E in such a way that each site is either empty or occupied by at 
most one particle. The stochastic time evolution of the system is 
Markovian and has the following features: particles disappear at rate 1 and 
new particles appear at each empty site x ~ 7/at rate 2" (number of particles 
at the sites x - 1 and x + 1). 2 e N + is a fixed parameter. Precise definitions 
are left to the next section. 

The configurations of the process can be identified with the subsets of 
7/in the usual way: the set of occupied sites defines the configuration. It is 
clear that ~ (all sites empty) is a trap for the process, so 6~ is an invariant 
measure for every 2 s N +. But one of the fundamental results about that 
model is the existence of a critical value 2 ,  e (0, oe) such that for 2 > 2 ,  
there exists another extremal invariant probability measure which we 
denote by/~. For  2 < 2 ,  6~ is the only invariant probability measure. 

Consider also the finite analog of this model in which particles are dis- 
tributed in { - N ,  - N + I , . . . ,  N-1,  N}, NeN, and the stochastic 
evolution is as before except that a new particle appears at the site - N  
(resp. N) when it is empty at rate 2 - (number  of particles at site - N +  1) 
[resp. 2 . (number  of particles at site N - l ) ] .  For  any 2 E ~ +  and any 
initial configuration the process will eventually reach ~ and stay there. 6 e  
is the only stable equilibrium. 

In Ref. 1 it was shown that starting with all sites in { -  N, - N  + 1 ..... 
N -  1, N} occupied the finite model presents a metastable behavior before it 
reaches the equilibrium 6 e ,  if N is large. But there one used the technical 
hypothesis that 2 > k ,  > 2 ,  (k ,  is the critical parameter of another model) 
in order to prove the theorems. Condition (b) was proved considering as 
observable only cylindrical functions (strictly local observables). 

We prove that (a) and (b) hold for the whole supercritical region 
2 > 2 , ,  even when one observes simultaneously translations of a cylindrical 
function. As a corollary, condition (b) holds also if one observes averages 
of the translations of a cylindrical function, like the spatial density of par- 
ticles (macroscopic observables). 

In Section 2 we define the contact process and related processes, and 
summarize also some properties of those processes which we use later. In 
Section 3 we state the main theorems which are proven in Sections 4 and 5. 
In Section 6 we prove that condition (a) does not hold for 2 < 2 , .  

2. T H E  C O N T A C T  M O D E L  

The contact model of Harris (24) was motivated by a biological 
problem: the propagation of an infection. We deal with it because it has 
some important features: spatial structure (nearest-neighbor interaction), 
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and even in one dimension presents critical behavior. In fact this model is 
also known in the physics literature 17/with a different name. In this context 
it is studied numerically in connection with reggeon field theory. 

The model is a continuous time Markov process taking its values on 
the set ~ ( Z )  of all the subsets of Z (we will restrict the definition to the 
one-dimensional case). Particles are distributed in Z in such a way that 
each site is empty or occupied by at most one particle. ~(t) denotes the set 
of occupied sites at time t. We construct the contact process with the help 
of a random graph (percolation structure), in the space-time diagram 
Z x ~+ .  For each i6 ;E consider three independent Poisson processes on 

§ R+: (~=)=~ ~, (%)=~ ~, (~+i)~ ~ with parameters 2, 2, and t, respectively. 
We suppose that for i varying in Z the processes are all independent. Now, 
for each ieT/ we draw arrows in Z x ~ + ,  from ( i , ~ )  to ( i+  1, ~) ,  k = l ,  
2 ..... i~Z.  Secondly we draw arrows from (i, ~ )  to ( i -  1, ~) ,  k = 1, 2,..., 
i~Z.  Finally we put down + signs at each of the points (i, v2-i), k =  1, 
2,..., i~ Z. 

We call a segment linking (x, t) to (x, s) a time segment. We give it the 
orientation from (x, t) to (x, s) if s > t. 

Given two points (i, s) and (j, t) in the space-time Z x ~ + ,  with s <  t, 
we say that there is a path from (i, s) to (j, t) if there is a connected chain 
of oriented time segments and arrows in the random graph, leading from 
(i, s) to (j, t), following the direction of the time segments and arrows and 
without passing through a + sign. 

Now, given A ~ ( ~ ) ,  we define the process [~.A(t),t>~O] in the 
following way: ~A(0)=A, and for t > 0 ,  ~A(t)= {jEY: there is a path from 
(i, 0) to (j, t), for some i6A}. 

Using the same percolation structure we define other related processes. 
The contact process taking values on ~({  - N ,  - N +  1,..}) or on ~({  - N ,  
- N +  1,..., N -  1, N}), where N is a positive integer. In the first case it is 
enough to use just the Poisson processes (z~).~ { U , - - X +  1,...}, 

(~',), ~ ( - u +  ~,...) and (~+),~ ( N,-N+ 1,...} disregarding the others. In this case 
we say that there is a path from (i, s) to (j, t), t > s if it can be constructed 
only with the arrows determined by this processes. In the same way as 
before, but with this new definition of path, we define for t > 0 ,  
~_n,o~)(t)= { j~Z :  there is a path form (i, 0) to (j, t) for some i~A}, 
~_U,~)(0) = A, where A ~ { - N ,  - N +  1,...}. 

Analogously we define the contact process on : ~ ( { - N , - - N +  1,..., 
N - l ,  N}) using to construct the paths only the Poisson processes 

N , . . . , N -  - i  
1}' (rn)nc{ N+I,...,N} a n d  +i (%)=~( u,.,u~. We will use for it 

the notation (~ ( t ) ,  t~>0), for any A c { - N ,  .... N} as initial state. 
In this way we have constructed all those processes on the same 

probability space, and we have some useful relations, such as 
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r V A ~  { - N ,  .... N}, t > 0  

~ _ N . ~ ( t ) c ~ A ( t )  VA c {-N,. . .},  t > 0  

~A(t) c ~ ( t )  if A ~ B c 2  

which hold for all possible trajectories of the processes. Relations like the 
last one are called monotonicity. (3) We use the convention of omitting the 
initial condition in the notation when it is the largest possible. So 
~( t )= ~ ( t ) ,  ~N(t) = ~{N--N'""X}(t), 3[ N,m)(t)=~t--U:~})(t) �9 Expectations will 
be denoted by E(.). 

By elementary Markov process theory and the fact that ~ is a trap 
(~ ( t ) ,  t/> 0) is ergodic with invariant measure concentrated at the empty 
set 6~. For (~A(t), t~> 0) and (~_N.~( t ) ,  t~> 0) the situation is different. 
There is 2 ,  ~ N + such that if 2 < 2 ,  both are ergodic, if 2 > 2 ,  both are not 
ergodic. In the second case there are for both just two extremal invariant 
measures: one is 6~ and the other, which we denote, respectively, by # and 
#Eo,~), can be obtained as the weak limits ~ ( t ) ~ # ,  ~ N,~)(/)--~#[_N,~) 
as t ~ ~ .  The fact that the critical value 2 ,  is the same for both models is 
stated in Ref. 2. It is not proved there but the proof is simple using the 
techniques developed there. 

Now we summarize other properties of the contact process which we 
use later. For more details and the proofs see Refs. 2, 3, 4, and 8. 
Analogous statements hold for the semi-infinite process (~Eo.~)(t), t >~ 0). 

(1) Monotone convergence: If s > r  then for any A c 2  finite, 
P( ~(r) c~ A :~ ~ )  >~ P( ~(s) c~ A ~ ~ )  ~ #(r/: r/~ A r ~ ) .  

(2) Self-duality: If A, B = 7/and at least one of them is finite, then for 
any t~>0 

P(~A(t) C~ B ~ (3) = P( ~B(t) c~ A ~ ~ )  

In particular for finite A ~ 7/ 

P(r # ~ )  = P(r c~ A # ~3) 

A useful consequence of self-duality if 2 > 2,  is the following: Since ~ is a 
trap and ~(t) ~ # weakly as t ~ ov 

P(~A(s) r ~ ,  YS ~> 0) = lim P(~A(t) r ~ )  
t ~  ~3 

= lim P(~(t)c~A ~ )  =#(q:  q n A  - r  

for any finite A ~ 7/. 
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For )~ < 2 , ,  by the same reasoning one concludes that for any finite 
Am7/ 

P( ~A(s) r (25, Vs >1 O) = 0 

(3) Define p;=P(~{~162 Then if 2 < 2 . ,  p ) = 0  and if 
~. >,~, ,  p~ = #(~: ~ n  {0} # ~ ) > 0 .  

(4) # is translation invariant and ergodic under space translations. In 
fact it has even exponentially decaying correlations. 

3. RESULTS 

We show that for )~ > 2 .  the process (~N(I), I/> 0) behaves metastably 
for large N, in the sense of conditions (a) and (b) of the Introduction. 
Informally its behavior is as follows: Initially there is a global phenomenon 
in which ~X(t) becomes close to # restricted to ~ ( { - N ,  .... N}). As 2 > 2 , ,  
the tendency is of expansion, i.e., if we were considering the process 
(~{ N'""N}(t), t ~> 0), with large N, with great probability 
min~ ~ N'"N}(t)-~ --0(3 and max ~{-x'"N}(t) -+ +00 as t---~oo. 

Nevertheless the boundary conditions at N and - N  prevent this expan- 
sion. The system remains in apparent equilibrium with ~u(t) close to # 
restricted to ~ ( { -  N,..., N}) until a great fluctuation carries it to the true 
equilibrium at c~.  

Let us introduce some notation: 

T~ = inf{t > 0: ~v(t) = ~ }  

TN= inf{ t >O: ~u( t)= (2~ } 

As usually we identify # ( Z )  with {0, 1} ~, if q E # ( Z )  we write for any 
x ~ Z ,  r/(x)= 1 i f x s q  and r / (x)=0 i f x r  We define m a x q = s u p { x ~ Z :  
q(x) = 1 }, rain 1/= inf{x ~ 7/: q(x) = 1 }. Given a cylindrical function 
f : ~ ( 2 ) - - . ~ ,  the support o f f  (defined as the smallest B = Z  such that 
f ( A ) = f ( A c ~ B ) ,  VA =7/) will be denoted by A ( f )  or just by A if there is 
no possibility of confusion. We define the operators of translation z~, i E Y 
by 

(~cif)O?) = f(tl~i)), q(i)(x) = q(x -- i) 

Given f and two numbers N, L E N, we define 

I j~N(L ) -'= {i ~ Z: A(~ i f  ) ~ [ - -N  + L, N- -  L] n ~_} 

~;U = {i6Z:  A ( ~ i f ) =  [ - N ,  N] ~ Z} 
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Temporal means of f with respect to the process (~N(t), t>~O) will be 
represented by 

AN(s, f )  = R - '  f f+Rf(r dt 

where s is the instant of the beginning of the measurement and R the time 
interval of observation. Taking the spatial mean of translations of f we 
define 

1 

1 
BN(s , f )=AN(s , f )  = - ~ AN( s , r i f )  

Ib, NI ,~ 7,,N 

Given a probability measure v on N(7/) we write v ( f ) = S f d v  for the 
expectation of f with respect to v. By the definition of (~N(t), t)O), 
P(TN>t) is a continuous and strictly decreasing function oft .  So there 
exists a unique J~U such that P(T u > flu)= e-1. 

It is clear that as N increases, P(T u ~ t ) ~  0 for any t >  0. In order to 
see the jump to the stable situation one has to consider a different time 
scale. Let us refer to the original time scale with which we have been deal- 
ing up to now as the microscopic time scale. We introduce now the 
macroscopic time = (microscopic time)/flu. 

Theorem 1 below states that condition (a) in the introduction holds 
(asymptotically as N ~ ~ )  for the macroscopic time. At the end of Sec- 
tion 4 we show that it is also possible to use the expected value E(TN) 
instead of /~N to rescale time. Now, the meaning of condition (b) in the 
Introduction is the existence of a time scale intermediate between 
the microscopic and macroscopic one: intermediate time = 
(microscopic time )/ R u , 

I ~RN~flN 

such that for any cylindrical f 

A NN(S, f )  ~ # ( f )  

if 

s+RN< TN 
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More precisely we state the following: 

T h e o r e m  1. If 2 > 2 ,  then Tu/flu converges in distribution to a 
unit mean exponential random variable, as N--, oo. 

T h e o r e m  2. If 2 > 2 , ,  there is a sequence of positive real numbers 
(RN, N>~ 1) such that (i)RN/flN---+O a s  N ~  co and (ii)for all e > 0  and 
f:  N ( Z ) ~  ~ cylindrical, there is L = L(~, f ) e  N, independent of N, such 
that 

P[  max max [ANN(IRN, ZJ)--#(f)I>e]--*O 
lEZ iEIj:N(L) 

O<~l<K N 

as N ~  o% where KN=max{l~Z+: l R N <  TN}. 

T h e o r e m  3. If 2 > 2 ,  and (RN, N~> 1) is a sequence satisfying the 
conditions of Theorem 2 above then 

P[ m a x  
l e e  

O<~I<KN 

[BNN(IRN, f )  -- P(f)l  > O] --* 0 

as N--* oo. 
An important particular case of Theorem 3 is that with f = I{,:,~0~ = ~,  

then f is the spatial density of particles. The proof of Theorem 2 depends 
on estimating the decay of temporal correlations of (~(t), t ~> 0). 

4. P R O O F  OF T H E O R E M  1 

We wi l l  show that for al l  s > O, t > 0 

lim P > s + t  - P  > s  P > t  = 0  (4.1) 
N ~ o o  

This implies the result since by induction it implies that for positive 
rational r 

and by monotonicity the same follows for all positive real values of r. 
In order to prove (4.1) we define for b > 0  

Fb= ~ A c Z :  [An [ - b ,  1], .~p IAc~ El, b]l >_p'~ 
(4.2) 

b 2 '  b 2J  

where p = p ~ = p ( q :  0Eq}, p > 0  if 2>2,~. 
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man '1} 
+ P > s, ~(/~xs) ~ Fb 

The relation (4.1) will be proven once we show that for all e > 0, there 
exist b(e) and N(e)> b(e) such that 

[TN 1 [ T A N ]  (4.4) P -~N>t - -P  > t  <e  if N>~N(e) andA~Fb(~) 

P >s, ~(BNs)~Fb(~) <e  if N>>,N(e) (4.5) 

To prove (4.4) we consider ~N and ~ constructed with the same per- 
colation structure. Then 

P -~u>t --P >t =PI_BN>t, <~t ~<P[TN:~T~, ] (4.6) 

For ~o > 2 , ,  given e > 0 there is n(e) such that if n ~> n(e) then 

[1 ,  n ]  = 

If N is large enough we can take b = b'(e) such that n(e)~ b.p/2, b < N. It 
follows for AeFb that ]A~ [ - b ,  - 1 ] [  >~b'p/2>~n(e). So 

PETA~[--b,-l~~[_ N, co) - - - -  oo] >~PET t _ N,.g;;N+,(~)}, = 00] >i 1 --~ (4.7a) 

where the first inequality is proved in the same way as relation (16) in 
Ref. 2 and the second is a consequence of the self-duality of the contact 
processes. (3,4) 

Analogously, 

We define the event 

p r  TA ~ [1,b] - -  - -  (4.7b) �9 ~[-~,N1 = oO] f> 1 
2 

E =  [-TA~[--b'--I] TA~[I'b] 00] 
L - - [  N, oo) = - - (  oo,N] = 
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and the stopping times 

U =  inf{t > 0: N~ r ~u~ ~) ' 1](/) } 

V= inf{t > 0: --NE ;A~ E~,b3r 

O n  E, T N > TAN > max(U, V). By standard arguments for the contact 
processes, based on the fact that the interaction is between nearest 
neighbors, we have that for t > max(U, V) 

~U(t) = CaN(t) 

So, on E, T N = TaN and (4.6) and (4.7) imply (4.4). 
To prove (4.5) we construct (~N(t), t>~O) and (~(t), t~>0) using the 

same percolation structure. We take b and L such that b < N -  L < N, then 

P[ ~u(fiuS) r Fb, TN > fiN S] 

<~ PlaN(fiN S) q~ Fb, T N > fiN S, min ~N(fiNS) < --N + L, 

m a x  ~u(fiu S) > N - -  L ] 

+ P[min ~N(fiN S) ~ - N  + L, T N > fiN S] 

+ e [ m a x  ~N(fiNS) <<. N - -  L, TN > fiNS] (4.8) 

But on [TN>fiNS ] 

~N(fiN S) 0 [ m i n  ~N(fiNS), m a x  ~N(fiNS) ] 

= ~(fiN S) f'~ [ m i n  ~N(fiNS), m a x  ~N(fiNS)3 (4.9) 

Thus the first summand in (4.8) may be bounded above by P[~(fiN S) q~ Fb]. 
But by the ergodicity of #, there is b"(e) such that if b > b"(e) 

P(r r F~) <. u(F~) <~ ~ (4.~0) 

where we used the stochastic monotonicity of the convergence ~(t) ~ #, as 
t --r cZ3. 

Finally, we will control the other two terms in (4.8) using again the 
semi-infinite contact process. From the nearest-neighbor nature of the 
interaction if follows that on [TN> t], 

min ~N(t) = min ~e-N,~)(t) 
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So 
P[min  ~N(~N S) ~ - N  + L, TN > ~N S] 

~< P[min  #[ N,~176 NS) >~ - N +  L] 

<~kt[_u, oo){A~[-N, oo )nZ:A~[ -N ,  - N + L - 1 ] = ~ }  (4.11) 

where the last inequality followed from the monotone convergence of the 
law of ~[_N, oo)(t) to /~[ u, oo) as t ~  oo. As 2 > 2 , ,  we can take L(e) such 
that for L > L(a), the right-hand side of (4.11) is smaller than ~/3. 

The other summand in (4.8) is analogous and (4.4) and (4.5) are 
proved. 

Remark. We can use E(TN) instead of/3N to rescale the time. This 
follows from the following proposition. 

Proposition 1. E(TN)/flN---~ 1 as N ~  oo. 

Proof. 

e(r.t_ 1 P(TN>t )d t=  P -~N 
[3N [1~ 

but P(TN/~U>t)<~P(TN/~N> [t])~<e m, where I t ]  is the integer part 
of t. By the dominated convergence theorem it follows that 

lim E(TN) fo~ lim P(T-~u ) fo - >t dt= e- 'd t=l  | 
N ~ oo ~ N N ~ oo 

5. TH ERMALIZATION 

First we prove that the time correlations of (~(t), t~>0) decay 
exponentially fast. 

Theorem 4. For  any cylindrical function f :  N(2) - - ,  N there are 
constants C > 0, 7 > 0, such that 

Icov[f(~(r)),f(~(s))]l <~ Ce ,t~-,I 

Proof. 
notation 

Without loss of generality we consider s > r .  We use the 

u = l x - r l  

given A c 7/, A(A) = {r/e ~(A):  q ~ A # ~ '},  Iz(A)(' ) = indicator of A. 
As any cylindrical function is a finite linear combination of these 

indicators it is enough to prove for any pair A, B e E ,  ]A[ < o% [B] < o% 
that 

Icov[Z~(Al(~(r)), I~<~>(#(s))] I ~< Ce-~" 
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We will construct some auxiliary processes. First we define dual per- 
colation structure (for more details about this technique see Ref. 3). Con- 
sider the percolation structure (random graph) constructed in Section 2. 
We define an inverted (microscopic) time scale l = s - t. Invert the direction 
of the time segments so that they are oriented according to increasing /. 
Invert also the direction of the arrows. Using l as time scale and given two 
points (i, ll), (j, 12)�9 7 / x ( - ~ ,  s] such that 11 < 12, we say that there is an 
inverted path from (i, ll) to (j, 12) if there is a connected chain of time 
segments and arrows leading from (i, l~) to (j, 12), following the new orien- 
tations of the time segments and arrows. 

Now consider the processes (Xt,  0 <<. l<<.s) and (Yz, u ~  l ~  s) defined 
by (we are using I as time scale) the following: 

X~= { j � 9  7/: there is an inverted path from (i, 0) to 

(j, l) for some i � 9  B } 

Yt= {J �9  7/: there is an inverted path from (i, u) to 

(j, l) for some j �9 A } 

The processes (Xt, 0 ~< l~< s) and ( Yt, u ~ l~< s) have, respectively, the same 
laws of (~B(t), 0 ~< t ~< s) and (~A(t), 0 <~ t <~ r), the first under the correspon- 
dence 1 ~ t and the second under l ~ t + u. 

We define the events 

EA = [I~(A)(r 1]---- [ Y, r ~ ]  

EB = [I~(e)(~(s)) ---- 1 ] = [X~ • ~ ]  

F =  IX,  r ~ ]  

Now, by the independence in disjoint sets property of the Poisson 
processes, the events EA and F are independent. Then 

]cov [I~(A)(~(r)),/~(B)(~(s)) ] [ 

= IP(EA ~ EB) -- P(EA) P(EB)I 

= IP(E A c~ E B n F) - P(EA) P ( E  B ~ F)l 

= I P ( E .  c~ EB c~ F) -- P ( E  A ~ F) + P ( E ~ )  P(F)  - P(EA)  P(EB c~ F) I 

= IP(EA) P ( E  c c~ F) - P(EA c~ Fc~ EBc)I ~< P ( E  c c~ F) 

= P ( X . ~ ,  x~= ~ )  = P(u < r B < s )  

<~ P( u < TB < o0 ) ~ Ce - 7" 

where the last inequality was proved in Ref. 2 (Theorem 5). | 
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Remark. In the same way one can prove analogous statements for 
the process (~to,~)(t), t >10): 

Icov[f(~{o,~)(r)), f(~Eo, o~)(s))3l ~ Ce-71s-rl 

Proof of Theorem 2. Since TN is almost surely finite, for any positive 
number RN, KN (as defined in the statement of the theorem) is a well- 
defined and finite random variable with values in N. Moreover, if the RN 
verify condition (i) above it follows from Theorem 1 that P(TN < RN)-~ 0 
as N ~  o% i.e., P(KN = 0 ) ~  0. Let us now assume R N is a sequence satisfy- 
ing (i). For s > 0 and f cylindrical given, let 

N _ Bk,~-- [IA~(kRN, r ~ f ) -  #(f) l  > e] 

Then, for any integers m ~> 1, L ~> 0 

O < ~ k < K N  iE I fN(L  ) 

I" ]) PEKN=j3-e U Bk,,XN=j 
. j=  1 I -k  = 0  i~/ZN(L)  

[ 2 1  >~P[I<~KN<~m]-- ~ I ~ U BL, KN=J 
/ =  1 ie l j ;N(L)  

>~P[1 <~Ku<rn ] -  ~ j ( 2 N +  1) max P[Bkmi, KN=j]  
O < k < j  

j = I i~ ON(L)  

~>P[1 <~Ku~m ] - m 2 ( 2 N +  1)max max P[BkN, i, KN=j]  
j ) l  O ~ k < j  

i~ II, N(L) 
(5.1) 

We construct (~N(t),t>/O), (~(t),t>~O), (r N,~)(t)'t~O)' and 
(~(m,u](t), t/> 0) using the same percolation structure. Then we have the 
following relation between events if 0 < L < N: 

[min ~N(t) < --N + L, m a x  ~N(t) > N- -  L]  

c (-] [zJ(~N(t))=zif(~(t))]  
ic l f ,  N(L) 

[TN > t] = [hL(~N(t)) = hL(~E_N, ov)(t)) ] 

(5.2) 

(5.3) 

where hL(~I)=I{r 
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In the case k < j and i~If, N(L ) 

P[BkN,, KN = j] 

=P[IANN(kRN, "c J ) - # ( f ) ]  >~, KN=j] 

< p [  AN (kRN, 1 ('(k+I)RN dt 
zif)---~Njk,u rif(r >Sa 

1 
d t - # ( f )  >~, j] j ~  ~ f ( ~ ( t ) )  ~ X,, = 

But, by (5.2) and (5.3), i f k < j  and i~If, N(L ) 
I 1 e~k+l)R~v 

[KN=j] ~ ANN(kRN, v~f)--~NJkR~ v~f(~(t)) dt 

o r  

(5.4) 

l ~ (k+I)RN 
~< 2 Ilfll RNN ~kRN [hL(~N(t)) + hL(S~a(t))] dt 

1 ( k+l,RN 1 = 2 Hfll ~N ~kRu [hL(~[ u,~)(t)) + h(S~( ~,N](t))] dt 

(5.5) 
defined by where Irfr l=sup,  c z f ( t / )  and S is the operator 

(S~)(x) = ~( -x ) .  
We define now the events 

FkR, = ~if(~(t)) d t -  > 
"JkR 

1 f(k+l~R hL(~E--U,~(t)) tit>4 p~,c = 2 [Jill ~ okR 

r f ,  o 

So (5.4) and (5.5) give us 

if k < j and iEIf, N(L ) then 

PE BkN,, KN --- j] <~ P(rf~) + 2P(Fff N,L) (5.6) 

Part (ii) of the theorem will be proved via (5.1) and (5.6) once part (i) is 
satisfied and we can find LeN,  and a sequence (raN, N>~ 1) such that as 
N ~ o o  

(a) P(I <~KN<~mN)~ I 

(b) m2(2N+ 1)(max P(F RN) + m a x  p(['fN, L)) ~ 0 
k>/O k>~O 
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Condition (a) may be written as P(TN<~mNRN)---~I or, using 
Theorem 1, a s  muRN/fi u-+ 0(3. Using the notation 

aL(R) = max P(F~) + max P( r f f  ,L) 
k>~O k~>O 

and including part (i) of the theorem, our problem now is to find L e  N 
and two sequences (RN, N>~ 1), (mN, N>~ 1) such that as N ~  oo 

m N R U / f l U  ---~ O0 (5.7a) 

m~Nc%(RN) ~ 0 (5.7b) 

Ru/fiU ~ 0 (5.7C) 

[the last relation is the condition (i) in the statement of the theorem]. 
Lemma 1 below shows that it is possible to choose L = L(e, f )  such that 
c%(R)<~ C/R (C depending on e and f ) .  Then it is enough to have (5.7a), 
(5.7c) and (remember that we have fixed e > 0) 

m~ v N ~ 0 (5.8) 

Lemma 2 shows that N/f iN ~ O, then 

m u .= ( f i N / N )  1/5 (5.9a) 

R N = figN/l~176 (5.9b) 

is a solutions to our problem. | 

k e m m a  1. If 2 > 2 .  and L = L ( e , f )  is such that /~[o.oo){A: 
A c~ [0, L]  = ~ }  ~< 5/16 [If[I, 3R(e, f )  such that c%(R) <~ C/R if R > R(e, f )  
(where C depends on e and f ) .  

Remark. We will use the convention that from expression to 
expression the value of C can change. 

Proof. First we prove that 
C 

max P(F N) <<, - -  
k >~ l R N 

consider the random variables 

1 ( (k+  1)R 

1 f(k+~)n 

f(~(t)) dt - I~(f) 

f(~(t)) d t - ~  "kR Ef(~(t)) dt 
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Then E(Y~) = 0 and by Theorem 4 

2 ~(k+l)Rdr[(k+l)R 
var(Y~) ~--7 JkR ds jcov[f(~(r)), f(~(s))]t  

OkR 

dr ds Ce ~(~- r)_ " CR =--C 
<<" -~  ~ k R - -  - - -~  R 

(C does not depend on k). 
By the Chebyshev inequality, V6 > 0 

C 
eel Y~I > 63 ~ ,~2R 

On the other hand, ~(t) ~ # weakly as t ~ oo, so Ef(r ~ p(f) .  And 

1 ~(k+ 1)R 
-R 3~R Ef(r dt ~ # ( f )  

uniformly in k, as R ~ ~ .  
Given ~ > 0 we can take R(e) such that 

1 [(~+ 1)R 
R > R ( e , f ) ~  -RJkR E f ( ~ ( t ) ) d t - - # ( f )  <<'4 

for all k ~> 1. 
For RN > R(e, f )  it follows that 

P(r~)--P IX21> <P  r~> ~<-- 
RN 

The other term in O~L(R ) c a n  be controlled in an analogous way. We define 

R__ 1 [(k+l)R 
Zk ---R ~kR hL(r dt 

R R 1 [(k+ 1)R 
Wk = Zk - -R ,kR EhL(r dt 

It folows that 
E(wb=o 

var(W~) ~< C 

C 
PEIW2l > 6] ~<~--~ (V6>O) 

S c h o n m a n n  
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Also EhL(~Eo,~)(t)) ~ #Eo,~)(hL) as t --* 0% increasing monotonically to the 
limit. 

So, for any k and R 

1 f(k+ l)R 8 
-R~kR EhL(~ro,~)(t)) dt<~#Eo,~)(hL)<~ 16 Ilf[----~ 

Finally, 

P ( r ~ ) = P  2 [ [ / [ [ [Z~[>  ~<P [W~[>16-~U[]. ~<~ | 

Lemma 2. N / f l N ~ O a s N - - * ~ , i f 2 > 2 , .  

Proof. We construct (~N(t), t ~> 0) and (~(t), t/> 0) on the same per- 
colation structure. Consider the event 

By self-duality 

P ( A N ) = # { B c / Y : B ~ [ o , N ] = ~ j } - - - ~ O  as N ~ o o  

By standard arguments, o n  A N the stopping time UN defined by 

UN = inf{ t > 0: N ~ ~ (o,u/21 ~ z (t) } 

is almost surely finite. 
On A N we have also the inequalities 

YN ~ UN ~ TN 

where YN is the instant of the [N/2] th  occurrence of a Poisson process of 
rate 2. 

So 

) ~ N  
<~ P ( Y N <~ ~ "~ , A N ) + P ( A ~v ) 

2N\  c 
<~P YN~--4--)-bP(AN)'--~O as N ~ o o  (5.10) 

where we used the law of large number for YN. 

822/41/3-4-8 
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By Theorem 1, 

P( TN/~N <~ x) --+ (1 - e -x) IEo.~)(x ) 

This combined with (5.10) implies the thesis. | 

Proof of lhoorom 3. Theorem 2 implies 

[max P ~ ANN(IRN, > ~ - + 0  
o N If, L) i~I~N(L ) 

as N~oe ,  i f L = L ( 2 , f )  

Using the inequality 

+b -s -s a -  a = c~b-/3a a /3 

with ~ = IIA,N(L)[, /3 = IIANI- IIA,N(L)], 

a= Z ANN(IRN, r J )  
i e [J;N(L) 

b = ~ ANN(IRN, r , f )  
ie(~f,N l fN(L))  

we obtain 

[IINI-j, iETf, N 1 2 A~N(IRN, "cif) ~ ANN(1RN'~J) IIf, N(Z)l ,~zj:~z~ 

4L Ilfll 
~< ~0 as N ~  

2 N +  1 - ]A]  

The relations (5.11) and (5.12) imply the thesis. | 

(5.11) 

(5.12) 

6 .  S U B C R I T I C A L  C A S E  

We prove now that Theorem 1 is false in the subcritical case (2 < 2,).  

T h e o r e m  6. If 2 < 2 , ,  TN/YN does not converge to an exponential 
random variable, for any sequence (TN, N~> 1). 
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Proof. We show that P(TN/In N <<. x) --* 0 if x < 1 and that there exist 
K >  1 such that P(TN/In N~< x) ~ 1 if x > K. 

The first part follows from the fact that T u >~ S N = maxi = _ N.....N ~ ~ i So 

P(TN/ln N <~ x) 

<~ P(SN/ln N~< x) = (1 -- e x,n N)ZN+ 1 

(1 1 2 N + I )  2N+l 
= ' �9 --*0 as N ~  oo, i f x <  1 

2N + 1 N x 

To prove the second part we use Theorem 8 in Ref. 4. It states that 
there is C =  C(2) such that 

P(max~(  o~ ,o ] ( t )> -eC ' )~0 ,  as N - , o o  

NOW ~x( l )  C ~(_oo,u]( t ) ,  SO 

P( Tu/ln N > 2/C) 

~< P(max ~N(2 In N/C) > - N )  

~< P(max ~(_ ~,Nl(2 in N/C) > - N )  

=P(max~.(_~,o](21nN/C)>-2N)--,O as N---,oo | 
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